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a b s t r a c t

A lattice Boltzmann equation (LBE) method for incompressible binary fluids is proposed to
model the contact line dynamics on partially wetting surfaces. Intermolecular interactions
between a wall and fluids are represented by the inclusion of the cubic wall energy in the
expression of the total free energy. The proposed boundary conditions eliminate the para-
sitic currents in the vicinity of the contact line. The LBE method is applied to micron-scale
drop impact on dry surfaces, which is commonly encountered in drop-on-demand inkjet
applications. For comparison with the existing experimental results [H. Dong, W.W. Carr,
D.G. Bucknall, J.F. Morris, Temporally-resolved inkjet drop impaction on surfaces, AIChE
J. 53 (2007) 2606–2617], computations are performed in the range of equilibrium contact
angles from 31� to 107� for a fixed density ratio of 842, viscosity ratio of 51, Ohnesorge
number (Oh) of 0.015, and two Weber numbers (We) of 13 and 103.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The lattice Boltzmann equation (LBE) methods model two-phase flows by incorporating intermolecular interaction forces
into the governing equations for the particle distribution functions, which essentially separate different phases and result in
interfacial tension effects [1–7]. The intermolecular interaction forces are derived by minimization of the total free energy of
the system. In the presence of the liquid–gas–solid triple contact line, the interaction between a liquid–gas interface and a
solid surface is modeled by incorporating a wall free energy into the formulation of the total free energy in the form of a
surface integral [8], although other treatments have been widely used [9–11].

Chang and Alexander [12], and Yan and Zu [13] employed Inamuro et al.’s LBE method for incompressible two-phase
flows [5] to simulate spontaneous water drop spreading on both homogeneous and heterogeneous partially wetting surfaces.
They assumed that the interactions between the fluid and the solid surface are of short-range [14], and thus can be modeled
by a surface integral that appears in the boundary condition of the free energy [15]. Although the equilibrium profile of the
spreading drops agreed well with prediction, no transient profiles were compared with either theory or experiment. Muk-
herjee and Abraham [16] investigated drop impact on dry surfaces whose equilibrium contact angles range from heq = 35� to
heq = 150� using an axisymmetric, multiple-relaxation-time (MRT) LBE method. In their model, the effects of a solid surface
on fluids are represented by introducing an external force field at the wall nodes. The strength of the external force was
reported to be linearly proportional to the equilibrium static contact angle and tabulated for interpolation. When the contact
line moves, as in drop spreading and recoil, the dynamic contact angle reconstructed from the ‘‘Hoffman’s function” [17] and
capillary number [18–20] was imposed as an input parameter in order to interpolate the values in the tabulated external
force field. Both density and viscosity ratios were fixed at 10, which are significantly lower than most experimental
. All rights reserved.
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conditions. Léopoldès et al. [21], Dupuis et al. [22], and Kusumaatma et al. [23] investigated spreading of droplets on chem-
ically and topologically patterned substrates using the free energy approach [24,25].

A potentially important issue in the simulation of the contact line is the existence of the parasitic currents that become
stronger in magnitude as the relative importance of interfacial tension outweighs other effects. As the characteristic length of
the problem gets smaller, the interfacial tension starts to dominate over the volumetric forces, and the discretization error
associated with the formulation of the interfacial tension increases, producing stronger parasitic currents that may lead to
unphysical deformation of the contact line. Discretization of the interfacial forces at the fluid–solid interface is thus impor-
tant in the accurate modeling of the micron-scale drop impact phenomenon. Recently, we have proposed wall boundary con-
ditions for van der Waals fluids [26] based on the free energy approach [27]. Using the linear wall free energy, we showed
that when the intermolecular force is formulated in the potential form and discretized with the isotropic finite difference, the
parasitic currents in the region of the contact line of a static drop can be completely eliminated at equilibrium. In [26], how-
ever, no dynamic drops in contact with solid surfaces were studied and the liquid–vapor density ratio was fixed at 5 because
of the intrinsic limitation of the linear wall free energy.

In this paper, a formulation of the LBE method for incompressible binary fluids [28] is presented and wall boundary con-
ditions for both the particle distribution functions and the intermolecular forcing terms are proposed. The LBE method is
applied to investigate micron-scale water drop impact on dry surfaces with different wettability. Understanding of mi-
cron-scale drop impact on a partially wetting solid surface is of great importance in the manufacturing of flat displays by
ink jet printing and plastic electronics. Modeling micron-scale drop impact poses a challenge that originates from a relatively
large capillary effect in the drop recoil stage. The computation results are compared with the experimental results by Dong
et al. [29] for drop impact in the range of equilibrium contact angles heq, from 31� to 150� for a fixed density ratio of 842, and
a viscosity ratio of 51.

The paper is organized as follows. In Section 2, the Cahn–Hilliard model with advection is briefly reviewed and the
cubic wall boundary condition is discussed. In Section 3, a systematic procedure to derive the LBEs for advective Cahn–
Hilliard equation and for the pressure evolution and momentum equations is presented. Section 4 describes the dis-
cretizations of the LBE, spatial gradients, and boundary conditions. Validation of the present LBE method and the sim-
ulations of micron-scale drop impact on dry surfaces are presented in Section 5. Concluding remarks are given in
Section 6.

2. Cahn–Hilliard model

The continuity equation for the species i of binary fluids can be written as [28,30]:
o~qi

ot
þr � ~qiui ¼ 0; i ¼ 1;2; ð1Þ
where ~qi and ui denote the local density and velocity of the species i, respectively. The mixture density, q ¼
P2

i¼1 ~qi is also
conserved. For convenience, we choose the heavier fluid as the species 1. The local velocity ui is related to the volume aver-
aged velocity u, the constant bulk density value qi, and the volume diffusive flow rate ji of component i by
qiji ¼ ~qi ui � uð Þ: ð2Þ
For the composition defined as C ¼ ~q1=q1, Eq. (1) can be rewritten as
oC
ot
þr � ðuCÞ ¼ �r � j1: ð3Þ
If the diffusive flow rate is not related to the densities but to the local compositions of two components, we have j1 = � j2 = j,
which yields [31]:
r � u ¼ 0: ð4Þ
The above condition is only approximately satisfied in the LBE method at low Mach number. The density may be taken as a
linear function of the composition:
q ¼ Cq1 þ ð1� CÞq2: ð5Þ
In the advective Cahn–Hilliard equation, the diffusive flow rate is assumed to be proportional to the gradient of the chemical
potential l [30]:
j ¼ �Mrl; ð6Þ
where M > 0 is the constant mobility.
It is assumed that the interactions between the liquid–gas interface and the solid surface are of short-range and appear in

a surface integral of the total free energy [8]. The total free energy then takes the following form:
Wb þWs ¼
Z

V
E0 Cð Þ þ j

2
jrCj2

� �
dV þ

Z
S

/0 � /1Cs þ /2C2
s � /3C3

s þ � � �
� �

dS; ð7Þ
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where the bulk energy is taken as E0 = bC2(C � 1)2 with b being a constant, j is the gradient parameter, Cs is the composition
at a solid surface that generally differs from the bulk or equilibrium composition, and /i with i = 0, 1, 2, . . . are constant coef-
ficients. The equilibrium profile is determined such that the energy is minimized and reads l = l0 � jr2C = const, in which
l0 = oE0/oC is the classical part of the chemical potential.

The plane interfacial profile at equilibrium is
CðzÞ ¼ 1
2
þ 1

2
tanh

2z
n

� �
; ð8Þ
where z is the coordinate normal to the plane interface and n is the interface thickness. Given n and b, one can compute the
gradient parameter j = bn2/8, and the interfacial tension between fluids:
r21 ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jE0ðCÞ

p
dC ¼

ffiffiffiffiffiffiffiffiffi
2jb

p
6

: ð9Þ
The solution of Eq. (3) with Eq. (6) requires two boundary conditions. The boundary condition for r2l ensures no mass flux
due to the chemical potential gradient in the direction normal to the solid boundary:
n � rljs ¼ 0; ð10Þ
where n is the unit normal vector. The boundary condition for r2C can be established by minimizing the total free energy
subject to the specified wall free energy.

Neglecting the terms higher than second-order in Ws and minimizing the total free energy Wb + Ws lead to the linear
boundary condition [13,15]:
n � rCjs ¼ �
/1

j
; ð11Þ
where
�/1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jE0ðCsÞ

p
: ð12Þ
Eq. (12) has four solutions, but there are only two stable solutions. If C represents the composition of the heavier fluid (fluid
1), the two stable solutions are expressed in terms of the dimensionless wetting potential X1 ¼ /1=

ffiffiffiffiffiffiffiffiffi
2jb

p
as
Cs;1 ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þX1
p

2
; ð13Þ
which is the composition of the heavier fluid in contact with a solid surface at equilibrium, and
Cs;2 ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�X1
p

2
; ð14Þ
which is the composition of the lighter fluid in contact with a solid surface at equilibrium. The equilibrium contact angle heq

at the three-phase contact line is determined by considering Young’s law:
cos heq ¼ 1þX1ð Þ3=2 � 1�X1ð Þ3=2

2
: ð15Þ
A detailed derivation of the linear boundary condition can be found in [13].
Notice that Cs,2 < 0 on a non-wetting surface. Due to Eq. (5), a negative Cs results in a very small or even negative value of

the equilibrium wall density, i.e., qs,2 < 0 if Cs,2 < (1 � q1/q2)�1. This indicates that as the density ratio q1/q2 increases, the
value of the equilibrium wall density rapidly tends to zero and may turn negative even on a weakly non-wetting surface,
triggering severe numerical instability. Yan and Zu [13] avoided negative density by postprocessing the computed density
to be clamped between the two bulk fluid densities. However, such modification could introduce discontinuous stress field
close to the contact line.

Negative equilibrium density on a non-wetting surface can fundamentally be avoided as the higher-order terms in Ws are
retained. To construct a cubic boundary condition, we neglect the interactions between the solid and bulk fluids and only
take the interactions between the solid and fluid–fluid interface into consideration. This assumption leaves us the following
choice of parameters; /0 = /1 = 0, /2 = 1/2/c, and /3 = 1/3/c, where /c is a constant to be determined. At equilibrium, we
have two solutions, Cs,1 = 1 and Cs,2 = 0, that satisfy:
/c Cs � C2
s

� �
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jE0ðCsÞ

p
: ð16Þ
Irrespective of a degree of non-wettability, the positivity of Cs,2 is guaranteed at equilibrium and thus qs,2 remains in the
proximity of the bulk density q2, although small fluctuations around the equilibrium value are expected in transient
calculations.
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The interfacial tension between the solid and fluids 1 and 2 are respectively obtained as
rs1 ¼ /c
1
2

C2
s;1 �

1
3

C3
s;1

� �
þ
Z 1

Cs;1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jE0ðCÞ

p
dC ¼

ffiffiffiffiffiffiffiffiffi
2jb

p
6

Xc; ð17Þ

rs2 ¼ /c
1
2

C2
s;2 �

1
3

C3
s;2

� �
þ
Z Cs;2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jE0ðCÞ

p
dC ¼ 0; ð18Þ
for which the dimensionless wetting potential Xc ¼ /c=
ffiffiffiffiffiffiffiffiffi
2jb

p
is related to the equilibrium contact angle heq due to Young’s

law:
cos heq ¼ rs2 � rs1

r21
¼ �Xc: ð19Þ
This establishes the cubic boundary condition for r2C:
n � rCjs ¼
/c

j
Cs � C2

s

� �
: ð20Þ
Once Eq. (20) is imposed, l = l0 � jr2C is treated as a scalar. The derivation of the cubic boundary condition for van der
Waals fluids can be found in [32].

The composition C of bulk phase is allowed to slightly vary around 0 and 1 when the system is out of equilibrium. When
the density ratio is large, this slight change in C may still result in very small density in the lighter fluid. Here we introduce an
artificial free energy that acts as an obstacle to negative C:
EAðCÞ ¼
bAC2; if C < 0;
0; if C P 0:

(
ð21Þ
Fig. 1 shows the profiles of typical bulk free energy E0 and artificial free energy EA, which is zero for C P 0 and increases more
rapidly than E0 for C < 0. The governing equation for the transport of C becomes:
oC
ot
þ u � rC ¼ Mr2l̂; ð22Þ
where l̂ ¼ lþ oEA=oC. Since EA is zero in the interfacial region and the heavier fluid, it does not affect the equilibrium state of
the phase interface and its effect on the interfacial dynamics is negligible.

3. Discrete Boltzmann equations

The discrete Boltzmann equation (DBE) for the transport of the mixture density and momentum of incompressible binary
fluids is given as follows [28,33–35]:
Dfa
Dt
¼ o

ot
þ ea � r

� �
fa ¼ �

1
k

fa � f eq
a

� �
þ 1

c2
s
ðea � uÞ � FCa; ð23Þ
where fa is the particle distribution function, ea is the a-direction microscopic particle velocity, q is the mixture density, u is the
volume averaged velocity, cs is the speed of sound, k is the relaxation time, and f eq

a is the equilibrium distribution function:
C

E

0 1

0

E0

EA

Fig. 1. Profiles of typical bulk energy E0 and artificial energy EA.
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f eq
a ¼ taq 1þ ea � u

c2
s
þ ea � uð Þ2

2c4
s
� u � uð Þ

2c2
s

" #
ð24Þ
with ta being the weight [36], and Ca ¼ CaðuÞ ¼ f eq
a =q. The intermolecular force F comprises:
F ¼ rqc2
s � rp� Crlð Þ; ð25Þ
where qc2
s is the ideal gas contribution to the pressure and p is the dynamic pressure that enforces the incompressibility. The

total pressure is a sum of the dynamic pressure p, the thermodynamic pressure Cl0 � E0, and the pressure due to the inclu-
sion of curvature �jCr2C þ j

2 j rCj2. In motionless flow, the contribution from p disappears, and the parasitic currents are
eliminated.

Eq. (23) is the DBE for the mass and momentum equations and is to be transformed into the DBE for the pressure evolution
and momentum equations. He et al. [4] first used the transformation to obtain the pressure evolution equation, although they
did not make a distinction between the dynamic and thermodynamic pressures. We define a new particle distribution
function:
ga ¼ fac2
s þ ðp� qc2

s ÞCað0Þ; ð26Þ
and a new equilibrium distribution function:
geq
a ¼ f eq

a c2
s þ p� qc2

s

� �
Cað0Þ ¼ ta pþ qc2

s
ea � u

c2
s
þ ea � uð Þ2

2c4
s
� u � uð Þ

2c2
s

 !" #
: ð27Þ
Taking the total derivative Dt = ot + ea�r of the new variable ga gives [28]:
oga

ot
þ ea � rga ¼ �

1
k

ga � geq
a

� �
þ ea � uð Þ � rqc2

s Ca � Cað0Þð Þ � CrlCa
	 


; ð28Þ
where the dynamic pressure gradient is dropped because in the case of low Mach number (Ma = juj/cs), the dynamic pressure
is assumed to be p � O(Ma2), and (ea � u)�rp (Ca � Ca(0)) � O(Ma3).

Eq. (28) recovers the pressure evolution equation:
op
ot
þ qc2

sr � u ¼ 0; ð29Þ
and the momentum equation with the chemical potential gradient:
q
ou
ot
þ u � ru

� �
¼ �rp� Crlþr qc2

s k � ruþ ðruÞT
� �h i

; ð30Þ
where qc2
s k is identified as the dynamic viscosity g. Eq. (29) can be derived from the continuity equation. The dynamic pres-

sure is related to the density by op=oq ¼ c2
s , which leads to:
op
ot
þ qc2

sr � uþ u � rp ¼ 0; ð31Þ
where u�rp � O(Ma3) and thus it is negligible [37].
The particle distribution function ha for the composition C is related to fa by ha = (C/q)fa and heq

a ¼ ðC=qÞf
eq
a [28]. Taking

the total derivative Dt of the new variable ha gives:
oha

ot
þ ea � rha ¼

C
q
�1

k
fa � f eq

a

� �
þ ea � uð Þ � F

c2
s

Ca

� �

¼ �1
k

ha � heq
a

� �
þ fa

D
Dt

C
q

� �
þ C

qc2
s

ea � uð Þ � rqc2
s � rpþ Crlð Þ

	 

Ca: ð32Þ
fa of the second term on the right-hand side is approximated by f eq
a ¼ qCa, as it is assumed to approximate the intermolec-

ular forcing term in Eq. (23). Furthermore, due to r�u = 0 and Eq. (22):
fa
D
Dt

C
q

� �
� oC

ot
þ ea � rC

� �
Ca �

C
q

oq
ot
þ ea � rq

� �
Ca ¼ ea � uð Þ � rC þMr2l̂

h i
Ca �

C
q

ea � uð Þ � rqCa: ð33Þ
Finally, Eq. (32) becomes:
oha

ot
þ ea � rha ¼ �

1
k

ha � heq
a

� �
þMr2l̂Ca þ ðea � uÞ � rC � C

qc2
s
rpþ Crlð Þ

� �
Ca: ð34Þ
The Chapman–Enskog expansion is considered to examine Eq. (34) in the long-wavelength and low-frequency limit. The
time derivative is expanded as ot ¼ Kot0 þ K2

ot1 þ � � �, the space derivative as r = Kr1, and the distribution function for the
composition as
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ha ¼ heq
a þ Khð1Þa þ K2hð2Þa þ � � � ; ð35Þ
with K being the Knudsen number [34]. The first-order Chapman–Enskog approximation of Eq. (34) is
oheq
a

ot0
þ ea � r1heq

a ¼ �
hð1Þa

k
þMr2

1l̂Ca þ ea � uð Þ � r1C � C
qc2

s
r1pþ Cr1lð Þ

� �
Ca: ð36Þ
The integral of Eq. (36) over velocity space leads to:
oC
ot0
þr1 � ðuCÞ ¼ Mr2

1l̂; ð37Þ
which is the advective Cahn–Hilliard equation Eq. (22) whenr1�u = 0. The second-order Chapman-Enskog approximation of
Eq. (34) is
oheq
a

ot1
þ o

ot0
þ ea � r1

� �
hð1Þa ¼ �

hð2Þa

k
: ð38Þ
Substituting hð1Þa from Eq. (36) into Eq. (38) and integrating Eq. (38) over velocity space gives:
oC
ot1
¼ 0; ð39Þ
which is because the original intermolecular forcing terms in Eq. (23) are retained in both Eqs. (28) and (34).
4. Discretizations

4.1. Spatial gradients

The second-order central difference (CD) approximation of the directional derivative of a variable / along characteristics
is obtained at a lattice site (x) from the values of / at neighboring integer lattice sites:
dtea � rCD/jðxÞ ¼
1
2

/ xþ eadtð Þ � / x� eadtð Þ½ �; ð40Þ
or based on the values of / at half-integer (HI) lattice sites:
dtea � rHI/jðxÞ ¼ / xþ 1
2

eadt
� �

� / x� 1
2

eadt
� �� �

: ð41Þ
The second derivative of / along characteristics is obtained by applying the directional derivative twice at half-integer lattice
sites:
dtea � rð Þ2/jðxÞ ¼ dtea � rHI dtea � rHI/j xþ1
2eadtð Þ � dtea � rHI/jðx�1

2eadtÞ

h i
¼ / xþ eadtð Þ � 2/ðxÞ þ /ðx� eadtÞ½ �: ð42Þ
For discretization of the directional derivative of / at (x � eadt), the biased difference (BD) approximation in the direction
of backward characteristics is derived by Taylor-series expandingrCD/ around the point (x) using the central differences up
to second-order in dt ea:
dtea � rBD/jðx�eadtÞ ffi dtea � rCD/jðxÞ � dtea � rð Þ2/jðxÞ ¼
1
2
�/ xþ eadtð Þ þ 4/ðxÞ � 3/ x� eadtð Þ½ �: ð43Þ
When used in conjunction with the central difference at (x), the biased difference approximation at (x � ea dt) requires the
same compact grid support of (x + eadt,x,x � eadt). Although Eq. (43) is not conservative at (x � eadt), it is conservative at (x),
and therefore globally conservative.

Derivatives other than the directional derivatives can be obtained by taking moments of the directional derivatives with
appropriate weights to ensure isotropy.
rBD/jðxÞ ¼
1

c2
s dt

X
a–0

taea dtea � rBD
� �

/jðxÞ; ð44Þ

rCD/jðxÞ ¼
1

c2
s dt

X
a–0

taea dtea � rCD
� �

/jðxÞ;

r2/jðxÞ ¼
1

c2
s dt2

X
a–0

taðdtea � rÞ2/jðxÞ:
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The second-order mixed difference (MD) approximation is an average of the central and biased differences:
dtea � rMD/jðxÞ ¼
1
2

dtea � rBD/þ dtea � rCD/
h i

ðxÞ
; ð45Þ

rMD/jðxÞ ¼
1
2
rBD/þrCD/
h i

ðxÞ
:

4.2. Lattice Boltzmann equations

The LBE for Eq. (28) at (x,t) is obtained by applying the trapezoidal rule along characteristics over time step dt:
gaðx; tÞ ¼ ga x� eadt; t � dtð Þ � ga � geq
a

2s


x�eadt;t�dtð Þ

� ga � geq
a

2s


ðx;tÞ
þ dt

2
ea � uð Þ

� rBDqc2
s Ca � Cað0Þð Þ � CrBDlCa

h i
x�eadt;t�dtð Þ

þ dt
2

ea � uð Þ � rCDqc2
s Ca � Cað0Þð Þ � CrCDlCa

h i
ðx;tÞ

; ð46Þ
where the nondimensional relaxation time s = k/dt is related to the kinematic viscosity by m ¼ sc2
s dt. Eq. (46) is recast in a

simpler form:
�gaðx; tÞ ¼ �ga x� eadt; t � dtð Þ � 1
sþ 1=2

�ga � �geq
a

� �
x�eadt;t�dtð Þ

þ dt ea � uð Þ � rMDqc2
s Ca � Cað0Þð Þ � CrMDlCa

h i
x�eadt;t�dtð Þ

; ð47Þ
where �ga and �geq
a are the modified particle and equilibrium distribution functions, respectively, which are defined as
�ga ¼ ga þ
1

2s
ga � geq

a

� �
� dt

2
ea � uð Þ � rCDqc2

s Ca � Cað0Þð Þ � CrCDlCa

h i
; ð48Þ

�geq
a ¼ geq

a �
dt
2

ea � uð Þ � rCDqc2
s Ca � Cað0Þð Þ � CrCDlCa

h i
: ð49Þ
The LBE for Eq. (34) at (x, t) is derived similarly to Eq. (46):
haðx; tÞ ¼ ha x� eadt; t � dtð Þ � ha � heq
a

2s


x�eadt;t�dtð Þ

� ha � heq
a

2s


ðx;tÞ
þ dt

2
Mr2l̂Ca


x�eadt;t�dtð Þ

þ dt
2

Mr2l̂Ca


ðx;t�dtÞ

þ dt
2

ea � uð Þ � rBDC � C
qc2

s
rBDpþ CrBDl

�� i
Ca

� 
x�eadt;t�dtð Þ

þ dt
2

ea � uð Þ � rCDC � C
qc2

s
rCDpþ CrCDl

�� i
Ca

� 
ðx;tÞ

: ð50Þ
Notice that Mr2l̂Cajðx;tÞ is approximated by Mr2l̂Cajðx;t�dtÞ in order to avoid implicitness in C. This approximation still re-
mains accurate to second-order. The modified distribution functions �ha and �heq

a are defined as
�ha ¼ ha þ
1

2s
ha � heq

a

� �
� dt

2
ea � uð Þ � rCDC � C

qc2
s
rCDpþ CrCDl
� �� �

Ca; ð51Þ

�heq
a ¼ heq

a �
dt
2

ea � uð Þ � rCDC � C
qc2

s
rCDpþ CrCDl
� �� �

Ca: ð52Þ
The LBE for Eq. (50) then becomes:
�haðx; tÞ ¼ �ha x� eadt; t � dtð Þ � 1
sþ 1=2

�ha � �heq
a

� �
x�eadt;t�dtð Þ

þ dt
2

Mr2l̂Ca


x�eadt;t�dtð Þ

þ dt
2

Mr2l̂Ca


x;t�dtð Þ

þ dtðea � uÞ � rMDC � C
qc2

s
rMDpþ CrMDl
� ��

Ca

� 
x�eadt;t�dtð Þ

: ð53Þ
We choose s = 1/2 in the above equation, because the recovered Cahn–Hilliard equation is not affected by the choice of s
as shown in Eqs. (36) and (38). The composition, dynamic pressure, and momentum can be computed by taking the zeroth
and first moments of the modified particle distribution functions:
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C ¼
X

a

�ha; ð54Þ

qu ¼ 1
c2

s

X
a

ea�ga �
dt
2

CrCDl; ð55Þ

p ¼
X

a

�ga þ
dt
2

u � rCDqc2
s : ð56Þ
The dimensionless relaxation time is taken as an inverse function of the composition:
1
s
¼ C

s1
þ 1� C

s2
; ð57Þ
which implies that the collision frequency is linearly proportional to C.

4.3. Boundary conditions

Unknown particle distribution functions at the wall nodes are obtained from the bounce-back scheme, in which the out-
going particle distribution function fa reflects back at the wall boundary and continues streaming as if the reflected particle
distribution function f�a is a continuation of fa in the opposite direction as illustrated in Fig. 2(a). Here, e�a � n > 0 and ea�n < 0
and at the wall boundary node (xs), f�aðxsÞ ¼ faðxsÞ, which is followed by immediate relaxation toward the equilibrium state
with the density and velocity at the solid surface [26]. As is illustrated in Fig. 2(b), the bounce-back scheme can alternatively
be interpreted as the particle distribution function f�a traveling continuously from the solid nodes, if the unknown profile of f�a

in the solid nodes is taken as the mirror image of fa in the fluid nodes. This alternative interpretation is not used to compute
the particle distribution functions in the present study, but could be useful when the finite difference approximation of the
directional derivative is required.

In Fig. 3(a) a certain profile of a macroscopic variable / is assumed in the fluid domain. Evaluation of the first and second
derivatives of / at the boundary node (xs) and neighboring nodes (xs � eadt) typically requires information at (xs + ead t) and/
or (xs + 2eadt). Note that Eqs. (10) and (20) are the boundary conditions for r2l and r2C, and valid only at equilibrium, and
thus should not be imposed for the terms unrelated to the free energy. A one-sided difference may be considered, but it may
introduce unphysical mass and momentum fluxes across the wall boundary. Since the macroscopic variables, such as C and p,
are calculated from the zeroth moment of the particle distribution functions, the profile of / in the solid is assumed to take
the mirror image of / in the fluid as the particle distribution functions do. As shown in Fig. 3(b), when the points (xs + eadt)
and (xs + 2eadt) are located outside the computational domain while (xs � eadt) and (xs � 2eadt) are not, any unknown var-
iable / outside the fluid domain is approximated by
/ xs þ eadtð Þ ¼ /ðxs � eadtÞ; ð58Þ
/ xs þ 2eadtð Þ ¼ /ðxs � 2eadtÞ:
Eq. (58) imposes no flux condition, ea�r/js = 0, and prevents unphysical mass and momentum transfer through the boundary
nodes.
A schematic illustration of the bounce-back scheme: (a) fa is an outgoing particle distribution function from the fluid nodes (denoted by circles),
is reflected back at a wall boundary node xs to become f�a . (b) Alternatively, f�a travels continuously from the imaginary solid nodes (denoted by
les), if the profile of f�a in the solid nodes is taken as the mirror image of fa in the fluid nodes.



Fig. 3. Profile of an unknown macroscopic variable in the solid taken as a mirror image in the fluid.
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The directional derivatives, Eqs. (41) and (43), in the outgoing direction ea are then:
dtea � rCD/jðxÞ ¼ 0; ð59Þ

dtea � rBD/jðxsÞ ¼
1
2
�/ xs � 2eadtð Þ þ 4/ xs � eadtð Þ � 3/ðxsÞ½ �;

dtea � rBD/j xs�eadtð Þ ¼
1
2

4/ðxsÞ � 4/ xs � eadtð Þ½ �:
The directional derivatives in the incoming direction e�a are:
dte�a � rCD/jðxsÞ ¼ 0; ð60Þ

dte�a � rBD/jðxsÞ ¼
1
2
�/ðxs þ 2e�adtÞ þ 4/ðxs þ e�adtÞ � 3/ðxsÞ½ �:
Likewise, the second derivative, Eq. (42), becomes:
dtea � rC
� �2

/jðxsÞ ¼ � 2/ðxsÞ � 2/ðxs � eadtÞ½ �: ð61Þ
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Fig. 4. The equilibrium contact angle heq vs. dimensionless wetting potential Xc.



2r/D0

y/
D

0

-2 -1 0 1 2
0.0

0.5

1.0

1.5

(a) t/t 1 =0.1 (vector magnified by 3 ×10 5)

2r/D0

y/
D

0

-2 -1 0 1 2
0.0

0.5

1.0

1.5

(b) t/t 1=150 (vector magnified by 1 ×10 14 )

Fig. 5. Velocity fields around a drop on a surface with heq = 60�. Vectors are magnified by (a) 3 	 105 at t/t2 = 0.1 and (b) 1 	 1014 at t/t2 = 150. Three contour
levels represent C = 0.1, 0.5, and 0.9.

t/t 1

KE

0 100 200 30010-34

10-29

10-24

10-19

10-14

10-9

θeq = 90o

KE

0 100 200 30010-34

10-29

10-24

10-19

10-14

10-9

θeq = 60o

KE

0 100 200 30010-34

10-29

10-24

10-19

10-14

10-9

θeq = 30o

KE
m

ax

0 100 200 30010-34

10-29

10-24

10-19

10-14

10-9

θeq = 150 o

KE

100 200 30010-34

10-29

10-24

10

10-14

10-9

θeq = 120 o

Fig. 6. Time evolution of the maximum kinetic energy per unit volume with different values of heq at n = 5, R90� = 25, q1 = 1.0, and q2 = 1.188 	 10�3. Time is
normalized to the viscous time scale of the liquid phase t1 ¼ q1m1Rheq =r. s and r are fixed at 0.2 and 1 	 10�4, respectively.

8054 T. Lee, L. Liu / Journal of Computational Physics 229 (2010) 8045–8063
The directional derivatives in the incoming direction e�a can be found in the same manner. Derivatives other than the direc-
tional derivatives can be obtained by taking moments of the directional derivatives.
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5. Numerical test

5.1. Equilibrium drop on homogeneous surfaces

A two dimensional liquid drop on a solid surface with equilibrium contact angles ranging from 15� to 165� is generated at
the bottom center of a 200 	 100 computational domain for a D2Q9 lattice [36]. The initial area of the drop with different
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Fig. 7. Cross-sectional images of a 48.8 lm size water drop impacting on dry surfaces of (a) heq = 31� and (b) heq = 107� at 5 ls. The liquid–gas interface is
represented by a contour level C = 0.5.

Fig. 8. Time sequence of 48.8 lm size water drop impact on a dry surface of heq = 31�. We = 12.8 and Re = 241.
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contact angles is kept constant such that its radius on a neutrally wetting surface is R90� = 25 in lattice unit. We fix q1 = 1.0,
and q2 = 0.1, in which case the interface tension is r = 1 	 10�4. The interface thickness, relaxation time, and mobility are
n = 5, s = 0.5, and M = 0.02/b, respectively. Fig. 4 shows the equilibrium contact angle heq as a function of the dimensionless
wetting potential X for the cubic boundary condition. The equilibrium contact angle is calculated from the measured height
and base diameter of a drop on a solid surface at equilibrium. It is assumed that the system reaches equilibrium when the
maximum kinetic energy per unit volume drops to zero and the parasitic currents completely disappear. The LBE simulations
are compared with the analytic solution, Eq. (19), and the variation of the simulated contact angle from theory is less than 1�
for heq

6 150�. The LBE results start to deviate from Eq. (19) for heq > 150�, which is attributed to the fact that since the area of
the drop is fixed in all simulations, the radius of the drop is smaller for non-wetting surfaces and the grid resolution to rep-
resent a drop deteriorates as a result.

Fig. 5(a) is a velocity vector field magnified by 3 	 105 at dimensionless time t/t1 = 0.1, where t1 ¼ q1m1Rheq=r is the vis-
cous time of the liquid phase (fluid 1). Fig. 5(a) clearly indicates the presence of organized eddies around the phase interface
Fig. 9. Time sequence of 48.8 lm size water drop impact on a dry surface of heq = 107�. We = 12.8 and Re = 241.

Fig. 10. Time sequence of 50.5 lm size water drop impact on a dry surface of heq = 31�. We = 103 and Re = 685.
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and contact line. This is due to the imbalance between the dynamic pressure gradient and the chemical potential gradient,
which has not reached the equilibrium state yet. At t/t1 = 150, the organized eddies disappear and the parasitic currents are
eliminated to round-off as shown in Fig. 5(b). Unlike the LBE simulation with the linear boundary condition [26], enrichment
(or depletion) of the liquid phase in contact with a solid surface is not observed, because the cubic boundary condition takes
only the interactions between the liquid–gas phase interface and the solid into account.

Time evolution of the maximum kinetic energy per unit volume with different contact angles is shown in Fig. 6, where the
time is normalized to t1. In the simulations, q1 = 1.0 and q2 = 1.188 	 10�3 are used. The interface tension, interface thick-
Fig. 11. Time sequence of 50.5 lm size water drop impact on a dry surface of heq = 107�. We = 103 and Re = 685.

Fig. 12. Same as Fig. 11 but with the linear relaxation time from Eq. (62).
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ness, relaxation time, and mobility are r = 1 	 10�4, n = 5, s = 0.2, and M = 0.02/b, respectively. Although some irregularities
in the convergence history are apparent, overall convergence rates for different heq are similar, except for heq = 30�. As noted
in [26], the liquid–gas interface at small heq is too close to the solid surface making it difficult for the liquid at the solid sur-
face to reach the elevated equilibrium density due to inclusion of curvature. Moreover, the presence of the dynamic pressure
p in Eq. (28) affects the balance in the chemical potential gradient. Since the role of p is to enforce the incompressibility, it is
not to be recast or absorbed into the chemical potential through thermodynamic identity. There is a possibility that the dy-
namic pressure gradient may not be balanced by the interfacial tension when the system is away from the equilibrium state.
However, as the free energy is minimized through Cahn–Hilliard diffusion, the dynamic pressure gradient is gradually
decoupled from the chemical potential gradient, and at equilibrium, the dynamic pressure gradient becomes zero every-
where, eliminating the parasitic currents. Finally, the fixed interfacial tension at r = 1 	 10�4 for different radii of curvature
changes the pressure difference across the drop interface. As M increases, faster convergence toward the equilibrium state is
achieved [28].

5.2. Drop impact on dry surfaces

In this section, we consider micron-scale water drop impact on dry surfaces. Understanding of the drop impaction process
requires knowledge about the fluid flow within the drop and the surrounding gas, and about the movement of the dynamic
contact line [38]. Immediately after the impact, the cross-section of the drop resembles a truncated sphere, but as the liquid
continues to move radially, a nearly flat layer or blob is formed. The entire spreading stage lasts O(10) ls and the drop begins
2z / ξ

τ
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Fig. 13. Profiles of (a) relaxation time s and (b) dynamic viscosity g computed by Eqs. (57) and (62).
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to retract due to interfacial tension afterwards [29]. The extent and speed of retraction depend on the impact velocity and the
wettability of the solid substrate. The liquid-substrate interaction at the contact line becomes increasingly important toward
the end of drop spreading when inertial forces become small [39]. In general, retraction is weaker as the contact angle
decreases.

A three dimensional water droplet is generated at the corner of a 100 	 100 	 100 computational domain for a D3Q27
lattice [36]. The boundaries are all symmetric except at the solid surface, where the wall boundary condition developed
in the previous section is imposed. The interface thickness and initial drop radius are n = 5 and R0 = 25, respectively. Com-
putations are performed at two contact angles of 31� and 107�. The impaction process is primarily described by two inde-
pendent dimensionless numbers in addition to the contact angle, namely the Weber number (We), and Ohnesorge number
(Oh) or Reynolds number (Re). These dimensionless numbers are defined as follows:
Fig.
We ¼ q1U2
0D0

r
;

Oh ¼ g1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1rD0

p or Re ¼
ffiffiffiffiffiffiffi
We
p

Oh
;

where U0 is the drop impact speed, D0 is the diameter of the spherical drop prior to impact, g1 is the liquid viscosity. Follow-
ing [29], we consider Oh � 0.015, and two Weber numbers of 13 and 103 for a fixed density ratio of 842 (i.e., q1 = 1.0 and
q2 = 1.188 	 10�3), and a viscosity ratio of 51. The coefficient for EA is bA = 0.25.
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14. Variation of the spreading ratio D* and dimensionless drop height H* with time at D0 = 48.8 lm and We = 12.8: (a) heq = 31�; (b) heq = 107�.
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The effect of the mobility is examined for three different Peclet numbers defined as Pe ¼ ðU0j
1
2Þ=ðMb

3
2Þ. In Fig. 7, the snap-

shots of a water drop impacting on solid substrates with heq = 31� and heq = 107� are shown at 5 ls after impact. The liquid–
gas interface is represented by a contour level C = 0.5. The size of a real drop is D0 = 48.8 lm and the impact speed is
U0 = 4.36 m/s, which corresponds to We = 12.8 and Re = 241. In lattice unit, the impact velocity is U0,LBE = 0.02. As Pe de-
creases, the contact line tends to spread faster because the total energy is minimized through stronger bulk diffusion. This
tendency is more pronounced on a wetting surface (Fig. 7(a)), as the stronger bulk diffusion tries to eliminate the inflection
point in the liquid–gas interface close to the contact line. In the following simulations, Pe is fixed at 10.

Sequential images of the same water drop impact on a solid substrate with heq = 31� are shown in Fig. 8. As shown in the
figure, the initial impact phase is followed by a rapid radial flow where the layer or blob of fluid is formed near the contact
line. The contact line lags behind the blob, but after the blob reaches its maximum diameter at around 7 ls, the contact line
starts to catch up with the blob and expands slowly outward. Notice that the drop oscillates in the vertical direction between
10 and 20 ls before it reaches its equilibrium shape.

Fig. 9 shows sequential images of the same drop impact on a solid substrate with heq = 107�. Unlike impaction on the low-
contact angle surface, fluid is accumulated at the leading edge of the blob as the drop spreads and it starts pulling back after
the drop reaches its maximum diameter. As the kinetic energy of the drop is converted into surface energy, the drop retracts
under the influence of interfacial tension. The drop reaches its maximum spreading before 10 ls. Compared with the
heq = 31� case, the shape and height at the center undergo significant changes as the drop retracts. The drop continues to rise
to its maximum height at around 30 ls, pauses and spreads again toward the equilibrium shape.
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Fig. 15. Variation of spreading ratio D* and dimensionless drop height H* with time at D0 = 50.5 lm and We = 103: (a) heq = 31�; (b) heq = 107�.
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Sequences of drop impact at higher We are presented in Figs. 10 and 11. The size of a real drop is D0 = 50.5 lm and the
impact speed is U0 = 12.2 m/s, in which case We = 103 and Re = 685. In lattice unit, the impact velocity is now U0,LBE = 0.04. As
the relative magnitude of kinetic and surface energies is We, the drop spreads faster for higher We and the layer or blob be-
comes thinner when compared at equal diameter. In addition, the varied surface energy of the substrate indicated by the
contact angle has an insignificant influence on the layer thickness, while during spreading, the layer thickness increases.
In both cases, the maximum area wetted by the drop is larger than that on a smaller contact angle surface. Also noticeable
is that in the first stage of impact, the upper part of the droplet remains undisturbed, which illustrates that for high-speed
impacts, the time scale for spreading R0/U0 becomes considerably smaller than the time scale for deformation of the drop by

interfacial tension
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1R3

0=r
q

[38].

On the surface with heq = 31�, shown in Fig. 10, the drop retracts very slowly until it reaches the equilibrium shape after
maximum spreading. The height of the drop also increases during recoil. Compared with the low impact velocity case, the
diameter is larger at a given time with a higher We. With heq = 107�, shown in Fig. 11, the accumulation of fluid at the leading
edge of the blob as the drop spreads is clearly visible and the blob has a larger radius than the contact line during the entire
process of spreading, even after maximum spreading is reached. The blob becomes thicker as the drop begins to retract.
Eventually, the drop almost rebounds, but fails to lift off from the solid surface. In the experiment by [29], a partial rebound
was reported.

If dimensionless relaxation time is determined by a linear function of the composition [6]:
Fig. 16.
used.
s ¼ Cs1 þ ð1� CÞs2; ð62Þ
rather than Eq. (57), the drop exhibits slower spreading and retraction as shown in Fig. 12. Both the maximum spreading and
height after retraction are noticeably reduced. Unlike the drop in Fig. 11 that almost rebounds, the drop in Fig. 12 does not
show any sign of rebound and a significant portion of the liquid is always in contact with the solid substrate. The retardation
of interface motion is caused by the non-monotonic variation of dynamic viscosity g calculated from Eq. (62). Fig. 13 com-
pares the profiles of the relaxation time s and the kinetic viscosity g across the planar interface. s in Eq. (62) is symmetric
around z = 0 while s in Eq. (57) is shifted toward the gas phase, both of which share monotonic variation across the interface.
However, g obtained from Eq. (62) shows a peak in the interface region with a magnitude several times larger than the bulk
viscosities.

Time evolution of the dimensionless diameter or spreading ratio D* = D/D0 and dimensionless height H* = H/D0 is shown
in Figs. 14 and 15 for We = 12.8 and We = 103, respectively. In measuring the diameter of a spreading drop, the diameter of
the blob is chosen as D when the drop spreads and the diameter of the wetted area is chosen as D when the drop retracts, as
illustrated in Fig. 16. During the spreading stage, the diameter of the blob is usually larger than the diameter of the wetted.
As recoil begins, the blob disappears.

The agreement of the LBE simulations with experiment [29] is good, particularly at the early times up to <5 ls for both the
We = 12.8 and We = 103 cases. In Fig. 14(a) the experimental results show that the drop reaches an equilibrium state soon
after 10 ls, while the LBE result predicts a continued variation of D* and H* up to 25 ls. The difference in the final values of
D* between the experiment and simulation is noticeable. D* at equilibrium with a given contact angle can be found when
volume conservation and a spherical cap is assumed [38]:
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Definition of the spreading factor D*: (a) when the drop spreads, the blob diameter is used; (b) when it recoils, the diameter of the wetted area is
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D
 ¼ 8

tan heq

2

� �
3þ tan2 heq

2

� �� �
0
@

1
A

1=3

; ð63Þ
which is plotted with a horizontal dotted line in Figs. 14 and 15. It is speculated that the contact line of the real drop is slo-
wed down during retraction and pinned before it achieves the equilibrium contact angle. For the heq = 107� case in Fig. 14(b),
both the experiment and the LBE simulation converge to the expected spreading ratio given in Eq. (63) after the drop under-
goes some oscillations during retraction.

The influence of We emerges in the later stages of spreading, probably because viscous or interfacial tension effects be-
come important later with a larger We. As a result, the final radius becomes larger with a larger We as shown in Fig. 15. It is
also observed that the final spreading ratios are different for small and large contact angles, which confirms that the inter-
facial tension becomes important in the later stages of drop impact.

6. Concluding remarks

In this study, wall boundary conditions of the LBE method for incompressible binary fluids are proposed and described in
detail for the particle distribution function and the forcing terms. They are derived based on the minimization of the free
energy subject to polynomial wall free energy and the bounce-back rule. The LBE method is capable of eliminating the par-
asitic currents to machine accuracy in the presence of a wall boundary. The proposed boundary conditions are capable of
reproducing the theoretical values of the contact angles for moderate equilibrium contact angles, but become less accurate
for very high contact angles. The LBE method is applied to investigate micron-scale drop (approximately 50 lm in diameter)
impact dynamics on solid surfaces with two equilibrium contact angles heq = 31� and 107�. The numerical results are com-
pared with the experimental results and they are in good agreement, particularly at early times after impact. Contact line
pinning in the experiment and the finite interface thickness effect in the LBE simulation could contribute to the small dis-
crepancies found in the comparison.

Acknowledgments

This work was supported by the National Science Foundation (Grant No. DMS-0811046) and American Chemical Society
Petroleum Research Fund (Grant No. 4874-G9). We are indebted to H. Dong and J.F. Morris for experimental data and enlight-
ening discussions.

References

[1] A.K. Gunstensen, D.H. Rothman, S. Zaleski, G. Zanetti, Lattice Boltzmann model for immiscible fluids, Phys. Rev. A 43 (1991) 4320–4327.
[2] X.W. Shan, H.D. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47 (1993) 1815–1819.
[3] M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Lattice Boltzmann simulations of liquid–gas and binary fluid systems, Phys. Rev. E 54 (1996) 5041–

5052.
[4] X.Y. He, S.Y. Chen, R.Y. Zhang, A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor

instability, J. Comput. Phys. 152 (1999) 642–663.
[5] T. Inamuro, T. Ogata, S. Tajima, N. Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput.

Phys. 198 (2004) 628–644.
[6] T. Lee, C.-L. Lin, A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J.

Comput. Phys. 206 (2005) 16–47.
[7] H.W. Zheng, C. Shu, Y.T. Chew, A lattice Boltzmann model for multiphase flows with large density ratio, J. Comput. Phys. 218 (2006) 353–371.
[8] P.G. de Gennes, Wetting: statics and dynamics, Rev. Mod. Phys. 57 (1985) 827–863.
[9] R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, F. Toschi, Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle, Phys.

Rev. E 74 (2006) 021509.
[10] M. Latva-Kokko, D.H. Rothman, Scaling of dynamic contact angles in a lattice-Boltzmann model, Phys. Rev. Lett. 98 (2007) 254503.
[11] M. Sbragaglia, K. Sugiyama, L. Beferale, Wetting failure and contact line dynamics in a Couette flow, J. Fluid Mech. 614 (2008) 471–493.
[12] Q.M. Chang, J.I.D. Alexander, Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method, Microfluid Nanofluid 2

(2006) 309–326.
[13] Y.Y. Yan, Y.Q. Zu, A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio, J. Comput. Phys.

227 (2007) 763–775.
[14] J.W. Cahn, Critical-point wetting, J. Chem. Phys. 66 (1977) 3667–3672.
[15] A.J. Briant, J.M. Yeomans, Lattice Boltzmann simulation of contact line motion: II. Binary fluids, Phys. Rev. E 69 (2004) 031603.
[16] S. Mukherjee, J. Abraham, Investigations of drop impact on dry walls with a lattice-Boltzmann model, J. Colloid Interf. Sci. 312 (2007) 341–354.
[17] R.L. Hoffman, A study of the advancing interface. I. Interface shape in liquid–gas system, J. Colloid Interf. Sci. 50 (1975) 228–241.
[18] S.F. Kistler, Hydrodynamics of wetting, in: J.C. Berg (Ed.), Wettability, Marcel Dekker, New York, 1993, p. 311.
[19] I.V. Roisman, R. Rioboo, C. Tropea, Normal impact of a liquid drop on a dry surface: model for spreading and receding, Proc. R. Soc. Lond. Ser. A 458

(2002) 1411–1430.
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